skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O’Dea, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding how humans have altered coral reef food webs remains challenging due to the absence of prehistoric baselines. Here, we use fish remains preserved in fossil and archaeological deposits from Panamá and the Dominican Republic to explore how Caribbean reef fish mortality patterns have changed over millennia. By quantifying accumulation rates of shark dermal denticles (scales) and bony fish otoliths (ear stones) in reef sediments, we assess relative fish abundance, while otolith size serves as a proxy for body size at death. Comparisons of these death assemblages suggest a 75% decline in shark-derived material and a 22% reduction in the sizes of human-targeted fishes—consistent with historical exploitation. This evidence of decline in large-bodied, higher trophic level fish remains coincided with a doubling in prey fish otolith accumulation and a 17% increase in their reconstructed body sizes. These patterns in time-averaged death assemblages align with effects of release from predation, documenting an often assumed (but rarely shown) cascading effect. In contrast, otoliths of predator-sheltered cryptobenthic fishes showed no change in either accumulation or size, suggesting that ‘‘bottom–up”environmental factors were not responsible for the observed changes. Together, these data indicate that pre-exploitation predator communities strongly controlled exposed prey fishes, but this “top–down” effect diminishes rapidly toward the food chain base, especially in predator-resistant groups. Understanding trophic cascades on Caribbean reefs requires studying systems before predator depletion. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  2. Migration is an integral feature of modern mysticete whale ecology, and the demands of migration may have played a key role in shaping mysticete evolutionary history. Constraining when migration became established and assessing how it has changed through time may yield valuable insight into the evolution of mysticete whales and the oceans in which they lived. However, there are currently few data which directly assess prehistoric mysticete migrations. Here we show that calcite δ18O profiles of two species of modern whale barnacles (coronulids) accurately reflect the known migration routes of their host whales. We then analyze well-preserved fossil coronulids from three different locations along the eastern Pacific coast, finding that δ18O profiles from these fossils exhibit trends and ranges similar to modern specimens. Our results demonstrate that migration is an ancient behavior within the humpback and gray whale lineages and that multiple Pleistocene populations were undertaking migrations of an extent similar to those of the present day. 
    more » « less
  3. null (Ed.)
    Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host’s physiological capacities; however, the identity and functional role(s) of key members of the microbiome (“core microbiome”) in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems’ capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts’ plastic and adaptive responses to environmental change requires (i) recognizing that individual host–microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions. 
    more » « less
  4. null (Ed.)